Answer: 8.6 µm
Explanation:
At a long distance from the source, the components (the electric and magnetic fields) of the electromagnetic waves, behave like plane waves, so the equation for the y component of the electric field obeys an equation like this one:
Ey =Emax cos (kx-ωt)
So, we can write the following equality:
ω= 2.2 1014 rad/sec
The angular frequency and the linear frequency are related as follows:
f = ω/ 2π= 2.2 1014 / 2π (rad/sec) / rad = 0.35 1014 1/sec
In an electromagnetic wave propagating through vacuum, the speed of the wave is just the speed of light, c.
The wavelength, speed and frequency, are related by this equation:
λ = c/f
λ = 3.108 m/s / 0.35. 1014 1/s = 8.6 µm.
I would make the ramp flatter. In doing so the ramp would have to be longer.
Answer:
Acceleration of the car will be 
Explanation:
We have given that car starts from rest so initial velocity of the car u = 0 m/sec
And car traveled 400 m in 10 sec
So distance traveled by car s = 400 m
Time taken to compete this distance t = 10 sec
We have to find the acceleration of the car
From second equation of motion we know that 
So 

So acceleration of the car will be 
Answer: 52%
Explanation:
1W = 1 J/s
motor input is 10000 J/s
Potential energy change
PE = 955(9.81)(25.0) = 234,213.75
power needed to change the PE in that time
P = 234,213.75/ 45 = 5,204.75 Watts
motor is 5204.75 / 10000 = 0.520475 or 52% efficient
I think the answer is 3, population.