Answer:
4,313.43 mmHg is the pressure of a sample of gas at a volume of .335 L if it occupies 1700 mL at 850 mm Hg
Explanation:
Boyle's law says:
"The volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure." This means that if the quantity of gas and the temperature remain constant, the product of the pressure for the volume always has the same value.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
o P * V = k
If you have a certain volume of gas V1 that is at a pressure P1 at the beginning of the experiment and you vary the volume of gas to a new value V2, then the pressure will change to P2, it will be true:
P1 * V1 = P2 * V2
In this case:
- V1=0.335 L
- P1= ?
- V2= 1700 mL= 1.7 L (Being 1 L=1000 mL)
- P2= 850 mmHg
Replacing:
P1*0.335 L=850 mmHg*1.7 L
Solving:

<u><em>P1=4,313.43 mmHg</em></u>
<u><em>4,313.43 mmHg is the pressure of a sample of gas at a volume of .335 L if it occupies 1700 mL at 850 mm Hg</em></u>
Answer:
70.6 %
Explanation:
First step, we define the reaction:
2P + 3Br₂ → 2PBr₃
We determine the moles of reactant:
35 g . 1mol / 159.8 g = 0.219 moles
We assume, the P is in excess, so the bromine is the limiting reagent.
3 moles of Br₂ can produce 2 moles of phophorous tribromide
Then, 0.219 moles may produce (0.219 . 2) /3 = 0.146 moles of PBr₃
We convert moles to mass:
0.146 mol . 270.67 g /mol = 39.5 g
That's the 100 % yield reaction, also called theoretical yield. The way to determine the % yield is:
(Yield produced / Thoeretical yield) . 100
(27.9 / 39.5) . 100 = 70.6 %
Answer:
you didn't ask a question so here is your explanation.
Explanation:
Q = mc∆T. Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/kg∙K) ∆ is a symbol meaning "the change in"
Option a) H-H is the correct answer
Answer:
Cl
Explanation:
chlorine (2,8,7) is a non metal with highest electronegativity. Hence, it is most likely to form a negative ion with charge −1.
I hope it helps you