Answer: 38°
Using cosine rule,
a² = b² + c² -2bc cos(A)
Insert values from diagram
14² = 18² + 22.8² - 2(18)(22.8) cos(A)
196 = 324 + 519.84 - 820.8 cos(A)
-820.8 cos(A) = 196 - 324 - 519.84
-820.8 cos(A) = -647.84
cos(A) = -647.84/-820.8
A = cos^{-1} (-647.84/-820.8)
A = 37.88°
A ≈ 38°
19/5 as a mixed number is 3 4/5.
Answer:
210, a⁵b⁵
Step-by-step explanation:
The coefficient of a⁶b⁴ is 210
The term in the expansion having the greatest coefficient is a⁵b⁵ with a coefficient of 252
Answer:
1/4
Step-by-step explanation:
3/4 is also equal to 6/8. And 1/2 is also equal to 4/8.
So the order would be 6/8, 5/8, 4/8, 3/8 and then 2/8. Which would simplify to 1/4.
Answer:

Step-by-step explanation:
We want to find the Riemann sum for
with n = 6, using left endpoints.
The Left Riemann Sum uses the left endpoints of a sub-interval:

where
.
Step 1: Find 
We have that 
Therefore, 
Step 2: Divide the interval
into n = 6 sub-intervals of length 
![a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b](https://tex.z-dn.net/?f=a%3D%5Cleft%5B0%2C%20%5Cfrac%7B%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%20%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B4%7D%5Cright%5D%3Db)
Step 3: Evaluate the function at the left endpoints






Step 4: Apply the Left Riemann Sum formula

