Answer:
45.3 MN
Explanation:
The forging force at the end of the stroke is given by
F = Y.π.r².[1 + (2μr/3h)]
The final height, h is given as h = 100/2
h = 50 mm
Next, we find the final radius by applying the volume constancy law
volumes before deformation = volumes after deformation
π * 75² * 2 * 100 = π * r² * 2 * 50
75² * 2 = r²
r² = 11250
r = √11250
r = 106 mm
E = In(100/50)
E = 0.69
From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula
F = Y.π.r².[1 + (2μr/3h)]
F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]
F = 35.3 * [1 + 0.2826]
F = 35.3 * 1.2826
F = 45.3 MN
Independent auto lots usually have <u>higher</u> finance rates than dealerships
<u>Explanation:</u>
The finance rates that are charged by the dealers are lower than the finance charges that are charged by the independent auto. In case if you are getting financed through dealerships, you can also negotiate with them to charge finance rates and lower the charges of the finance.
But this negotiation and lowering of the finance rates is not possible with the independent auto lots and thus they charge higher rates compared to the dealerships.
Answer:
I don't know ☺️☺️☺️❌‼️
Explanation:
I don't understand this question
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em>
</em> therefore 
We have now that

multiplying through by T

multiplying through by 300
-
The temperature T= 648.07k