Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer:
The amplitude of the absorbed mass can be found
for ka:

now
![w^2=\frac{K_{a} }{m_{a} } \\m_{a} =\frac{K_{a} }{w^2} =\frac{125000}{[6000*2\pi /60]^2} =0.317kg](https://tex.z-dn.net/?f=w%5E2%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bm_%7Ba%7D%20%7D%20%5C%5Cm_%7Ba%7D%20%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bw%5E2%7D%20%3D%5Cfrac%7B125000%7D%7B%5B6000%2A2%5Cpi%20%2F60%5D%5E2%7D%20%3D0.317kg)
Advantages include low costs and minimal labor.Water stays in the root zone, and foliage stays dry. Drawbacks to surface irrigation include potential overwatering and wasteful runoff.
Answer:
The surface area of the primary settling tank is 0.0095 m^2.
The effective theoretical detention time is 0.05 s.
Explanation:
The surface area of the tank is calculated by dividing the volumetric flow rate by the overflow rate.
Volumetric flow rate = 0.570 m^3/s
Overflow rate = 60 m/s
Surface area = 0.570 m^3/s ÷ 60 m/s = 0.0095 m^2
Detention time is calculated by dividing the volume of the tank by the its volumetric flow rate
Volume of the tank = surface area × depth = 0.0095 m^2 × 3 m = 0.0285 m^3
Detention time = 0.0285 m^3 ÷ 0.570 m^3/s = 0.05 s