2355.2 is how many grams there are
Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
When we increase the temperature of one of the reactants in a chemical reaction, this increases the particles kinetic energy, making them move much faster than they were before. This also increases the chance of a more successful collision and the rate of reaction.
Explanation:
Your Welcome
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol