Answer:
Yes
Explanation:
In a third-class lever, the effort force lies between the resistance force and the fulcrum. Some kinds of garden tools are examples of third-class levers. When you use a shovel, for example, you hold one end steady to act as the fulcrum, and you use your other hand to pull up on a load of dirt.
Answer:
They both describe atoms as being made up of positive and negative matter.
Explanation:
In both Bohr's model and Thomson model, the atom consists of positively-charged matter and negatively-charged matter. However, the structure of the atom in the two models is totally different:
- in Thomson's model, the atom consists of a large sphere of uniform positive charge, and electrons (which are negatively charged) are scattered all around inside this sphere
- In Bohr's model, the atom consists of a small, positively charged nucleus, while the electrons (negatively charged) orbit around the nucleus in precise orbits.
Answer:
<em>The net force acting on the object is 0 N</em>
Explanation:
<u>Newton's Second Law of Forces</u>
The net force acting on a body is proportional to the mass of the object and its acceleration.
The net force can be calculated as the sum of all the force vectors in each rectangular coordinate separately.
The image shows a free body diagram where four forces are acting: two in the vertical direction and two in the horizontal direction.
Note the forces in the vertical direction have the same magnitude and opposite directions, thus the net force is zero in that direction.
Since we are given the acceleration a =0, the net force is also 0, thus the horizontal forces should be in equilibrium.
The applied force of Fapp=10 N is compensated by the friction force whose value is, necessarily Fr=10 N in the opposite direction.
The net force acting on the object is 0 N
If the gears are of different sizes, they can be used to increase the power of a turning force. The smaller wheel turns more quickly but with less force, while the bigger one turns more slowly with more force. Cars and bicycles use gears to achieve amazing speeds our bodies could never match without help.
· free fall is any motion of a body where gravity is the only forceacting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on it.