Answer:
0.42°
Explanation:
Using Snell's law of refraction which states that the ratio of the angle of sin of incidence to angle of sine of refraction is equal to a constant for a given pair of media. Mathematically,
Sin(i)/sin(r) = n
n is the refractive index of the medium
FOR VIOLET LIGHT:
n = 2.46
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.46 = sin51°/sinr
Sinr = sin51°/2.46
Sinr = 0.316
r = sin^-1(0.316)
rv = 18.42°
FOR RED LIGHT:
n = 2.41
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.41 = sin51°/sinr
Sinr = sin51°/2.41
Sinr = 0.323
r = sin^-1(0.323)
rd = 18.84°
The angular separation between these two colors of light in the refracted ray will be the difference between there angle of refraction.
Angular separation = rd - rv
= 18.84° - 18.42°
= 0.42°
Answer:
A) and B) are correct.
Explanation:
If the object is at rest, it means that no net force is exerted on it.
As the object experiences a downward gravitational force from Earth, in order to be at rest, it must experience an upward force with the same magnitude as the gravitational force on the object.
This force is supplied by the normal force, which can adopt any value in order to meet the condition imposed by Newton´s 2nd Law, and is always perpendicular to the surface on which the object is placed (in this case, the ground).
At a molecular level, this normal force is supplied by the bonded molecules of the ground that behave like small springs being compressed by the molecules of the object, exerting an upward restoring force upward on them.
So, the statements A) and B) are true.
Answer:
part (a). 176580 J
part (b). 197381 J
Explanation:
Given,
- Density of the chain =

- Length of the chain = L = 60 m
- Acceleration due to gravity = g = 9.81

part (a)
Let dy be the small element of the chain at a distance of 'y' from the ground.
mass of the small element of the chain = 
Work done due to the small element,

Total work done to wind the entire chain = w

part (b)
- mass of the block connected to the chain = m = 35 kg
Total work done to wind the chain = work done due to the chain + work done due to the mass

Answer: W = 0.3853 J, e = 0.052 m
Explanation: Given that,
K =285.0N/M , L = 0.230m , F = 15N , e = ?
F = Ke
15 = 285 × e
e = 15÷ 285
e =0.052 m
e + L = 0.052 + 0.230
= 0.282m ( spring new length )
Work needed to stretch the spring
W = 1/2ke2
W = 1/2 × 285 x 0.052 × 0.052
W = 0.3853 J
First we will use the concepts of motion kinetics for which the final speed is defined as shown below,

Here,
= Final velocity
= Initial velocity
a = Acceleration
s = Distance
Replacing,


Using the conservation of energy for kinetic energy we have,



Therefore the kinetic energy of the car is 31900J