Answer:
(a) The power wasted for 0.289 cm wire diameter is 15.93 W
(b) The power wasted for 0.417 cm wire diameter is 7.61 W
Explanation:
Given;
diameter of the wire, d = 0.289 cm = 0.00289 m
voltage of the wire, V = 120 V
Power drawn, P = 1850 W
The resistivity of the wire, ρ = 1.68 x 10⁻⁸ Ω⋅m
Area of the wire;
A = πd²/4
A = (π x 0.00289²) / 4
A = 6.561 x 10⁻⁶ m²
(a) At 26 m of this wire, the resistance of the is
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 6.561 x 10⁻⁶
R = 0.067 Ω
Current in the wire is calculated as;
P = IV
I = P / V
I = 1850 / 120
I = 15.417 A
Power wasted = I²R
Power wasted = (15.417²)(0.067)
Power wasted = 15.93 W
(b) when a diameter of 0.417 cm is used instead;
d = 0.417 cm = 0.00417 m
A = πd²/4
A = (π x 0.00417²) / 4
A = 1.366 x 10⁻⁵ m²
Resistance of the wire at 26 m length of wire and 1.366 x 10⁻⁵ m² area;
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 1.366 x 10⁻⁵
R = 0.032 Ω
Power wasted = I²R
Power wasted = (15.417²)(0.032)
Power wasted = 7.61 W
Given that,
Central maximum = 1 cm
Distance from the window shade to the wall =4 m
We know that,
The visible range of the sun light is 400 nm to 700 nm.
(a). We need to calculate the average wavelength
Using formula of average wavelength

Put the value into the formula


(b). We need to calculate the diameter of the pinhole
Using formula for diameter


Put the value into the formula


Hence, (a). The average wavelength 550 nm.
(b). The diameter of the pinhole is 0.537 mm.
Answer:
tornadoes bxjndndnbdbbdbbzbbsbZbbhhhw