Answer:
chris gets 960 and molly gets 1440
Explanation:
add the ratio up and divide
2+3=5
2400/5=480
480x2=960
480x3=1440
960+1440= 2400
Answer:
A) The sum of the kinetic energy and the gravitational potential energy changes by an amount equal to the energy dissipated by friction,
Explanation:
- The kinetic energy is the energy that the object has and is defied by the work that is needed to accelerate the body.
- The gravitational potential is a mechanism by which an equal amount of energy is being transferred per unit mass that is needed for the object to move from the specific location.
- Hence when the sled moves down the hill with the force of gravity it has negligible resistance as an equal amount of energy is dissipated.
Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s
The sun <u><em>appears</em></u> brighter than any other star.
(It isn't really, but it looks that way because it's much much much much much much closer to us than any other star.)
Answer:
-36.4 m/s
Explanation:
final velocity= initial velocity + acceleration x time
7 + (-9.8)(3)= -36.4 m/s