Answer:
e) A changing magnetic field produces an electric field.
Explanation:
Ok, we start with a magnetic field and let's study how it affects the motion of a single electron. As the magnetic field changes, it will cause an electromotive force, that moves the electron, and because now we have a moving electron, now we will have an electric field. (Such that the direction of the electromotive force opposes the direction in which the magnetic field changes). This also can be deduced if we look at the third Maxwell's equation:
dE/dx = -dB/dt
This says that the spatial change in an electric field depends on how the magnetic field changes as time pass.
Then the correct option is e) A changing magnetic field produces an electric field.
The wheel and axle increases your force. You exert your input force over a long distance and the output force is increased over a shorter distance. (Because the wheel is larger than the axle, the axle rotates and exerts a large output force.) A simple machine with a grooved wheel with a rope or cable wrapped around it.
Answer:
a2 = 2.5 m/s2
Explanation:
F1 = m1 a1 We use the same force so F1 = F2
= 5kg × 15m/s2 F2 = m2 a2
= 75N a2 is required
a2 = F2 / m2
= 75N / 30 kg
= 2.5 m/s2
About 21c because it also depends on the weather outside
Temperature is just a measure of how HOT or COLD a substance is, which can be easily defined by a magnitude using a numerical value say “300 K” or “27°C”. Hence we can say it is a scalar quantity.
But the energy which transfer by virtue of a temperature difference is a vector quantity, as it has both magnitude and direction of motion (from High temperature to low temperature region).