Answer:
emf induced in the loop, at the instant when 9.0s have passed = 1.576 * 10 ⁻² V.
Direction is counter clockwise.
Explanation:
See attached pictures.
Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.
<span>Answer:
Assuming that I understand the geometry correctly, the combine package-rocket will move off the cliff with only a horizontal velocity component. The package will then fall under gravity traversing the height of the cliff (h) in a time T given by
h = 0.5*g*T^2
However, the speed of the package-rocket system must be sufficient to cross the river in that time
v2 = L/T
Conservation of momentum says that
m1*v1 = (m1 + m2)*v2
where m1 is the mass of the rocket, v1 is the speed of the rocket, m2 is the mass of the package, and v2 is the speed of the package-rocket system.
Expressing v2 in terms of v1
v2 = m1*v1/(m1 + m2)
and then expressing the time in terms of v1
T = (m1 + m2)*L/(m1*v1)
substituting T in the first expression
h = 0.5*g*(m1 + m2)^2*L^2/(m1*v1)^2
solving for v1, the speed before impact is given by
v1 = sqrt(0.5*g/h)*(m1 + m2)*L/m1</span>
The relationship between the masses of the Earth, moon and sun and their distances to each other play critical roles in affecting tides
5.2m/s
Explanation:
Given parameters:
Mass of baseball = 0.15kg
Momentum of baseball = 0.78kgm/s
Unknown:
Speed of baseball = ?
Solution:
The momentum of the baseball is a function of the product of the mass and velocity. It is a vector quantity:
Momentum = mass x velocity
Since the speed of the ball is unknown:
Velocity =
= 
= 5.2m/s
The speed of the baseball before it lands is 5.2m/s
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly