Answer:
d. IF3
Explanation:
The Octet rule posits that atoms gain, atom lose, or share electrons in order to have a full valence shell of 8 electrons. This statement occurs when atoms also combine to form molecules until they attain or share eight valence electrons either by losing or gaining eletrons.
From the given options, a valid Lewis structure that cannot be drawn without violating the octet rule is IF3
Hey there!
C₉H₂O + O₂ → CO₂ + H₂O
First let's balance the C.
There's 9 on the left and 1 on the right. So, let's add a coefficient of 9 in front of CO₂.
C₉H₂O + O₂ → 9CO₂ + H₂O
Next let's balance the H.
There's 2 on the left and 2 on the right. This means it's already balanced.
C₉H₂O + O₂ → 9CO₂ + H₂O
Lastly, let's balance the O.
There's 3 on the left and 19 on the right. So, let's add a coefficient of 9 in front of O₂.
C₉H₂O + 9O₂ → 9CO₂ + H₂O
This is our final balanced equation.
Hope this helps!
<span>UV gel enhancements rely on ingredients from the monomer liquid and polymer powder chemical family. The chemicals from the polymer powder family </span><span>can absorb and retain extremely large amounts of a liquid relative to their own mass. Water-absorbing polymers, </span>can absorb aqueous solutions through hydrogen bonding with water molecules.
Answer:
The liquid boils.
Explanation:
Vapor pressure is simply defined as the pressure exerted on a substance (solid/liquid) by the vapor of the substance collected just at the top of the surface of the substance. In concise words, it is the pressure of Vapor that is in contact with its solid or liquid state.
For a liquid, it is the pressure of the Vapor gathering at the top of the surface of the liquid.
When this Vapor pressure matches the external pressure, the temperature stays constant and the molecules of the liquid all through the liquid can gain enough energy, rise to the surface of the liquid and break free in gaseous form; thereby, boiling.
The definition of boiling point basically explains that it is the point at which temperature stays constant, and the vapour pressure of the liquid matches the atmospheric/external pressure around the liquid and its liquid molecules change into vapor.
This is why liquids boil faster at higher altitudes; the atmospheric pressure at higher altitudes is reduced, hence, the temperature at which liquid boils at this high altitude is normally lower than its known boiling point temperature.
It is also why food cooks to a temperature higher than the boiling point of water in a pressure cooker/pot. The added pressure ensures that the cooking water boils at temperatures higher than its boiling point; thereby exposing the cooking ingredients to a higher temperature, leading to faster cooking.
Hence, it is obvious why boiling is the answer to this question.