Explanation:
The given precipitation reaction will be as follows.

Here, AgCl is the precipitate which is formed.
It is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
It is given that volume is 1.14 L and molarity is 0.269 M. Therefore, calculate number of moles as follows.
Molarity = 
0.269 M = 
no. of moles = 0.306 mol
As molar mass of AgCl is 143.32 g/mol. Also, relation between number of moles and mass is as follows.
No. of moles = 
0.307 mol = 
mass = 43.99 g
Thus, we can conclude that mass of precipitate produced is 43.99 g.
It depends on the function and activity of both cells. Most normal cells crease division if they came into contact with other cells however the immune system interact directly with pathogens or foreign organisms to destroy them.
Answer:1.
1.Balanced equation
C4H10 + 9 02 ==> 5H20 +4CO2
2. Volume of CO2 =596L
Explanation:
1.Combustion of alkane is the reaction of alkanes with Oxygen. And the general equation for the combustion is;
CxHy +( x+y/4) O2 ==> y/2 02 + xCO2
Where x and y are number of carbon and hydrogen atoms respectively.
For butane (C4H10)
x=4 and y=10
Therefore
C4H10 + 9 02 ==> 5H20 +4CO2
2. Mass of butane = 0.360kg
Molar mass of C4H10 = ( 12×4 + 1×10)
= 48 +10=58g/mol= 0.058kg/mol
Mole = mass/molar mass
Mole = 0.360/0.058= 6.2moles
From the stoichiometric equation
1mole of C4H10 will gives 4moles of CO2
Therefore
6.2moles of C4H10 will gives 4 moles of 24.8 moles of CO2
Using the ideal gas equation
PV=nRT
P= 1.0atm
V=?
n= 24.8mol.
R=0.08206atmL/molK
T=20+273=293
V= 24.8 × 0.08206 × 293
V= 596L
Therefore the volume of CO2 produced is 596L
Answer:
The soda can kept the same mass as it changed in shape only
Explanation:
Law of Conservation states "mass cannot be created or destroyed" therefore this is why the mass hasn't changed, but when it was smashed the shape changed.
Answer:
4.44 g Ne
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
0.220 mol Ne
<u>Step 2: Identify Conversions</u>
Molar Mass of Ne - 20.18 g/mol
<u>Step 3: Convert</u>
<u />
= 4.4396 g Ne
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.4396 g Ne ≈ 4.44 g Ne