Bond number
The characteristic of reactions that depends on valence electrons is the bond type.
In chemistry, a chemical bond could be;
Ionic
Covalent
The type of bond formed depends on the number of valence electrons present. When there are few valence electrons on an atom, it mostly forms ionic bonds.
When there are more electrons on an atoms, it mostly forms covalent bonds and the electrons between the atoms are shared.
Answer:
the answer is 10 times
Explanation:
because it takes 10 times as much energy -3330 j - to melt 10.0 grams of ice.
Answer : The value of
is 28.97 kJ/mol
Explanation :
To calculate
of the reaction, we use clausius claypron equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= vapor pressure at temperature
= 462.7 mmHg
= vapor pressure at temperature
= 140.5 mmHg
= Enthalpy of vaporization = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![-21.0^oC=[-21.0+273]K=252K](https://tex.z-dn.net/?f=-21.0%5EoC%3D%5B-21.0%2B273%5DK%3D252K)
= final temperature = ![45^oC=[-41.0+273]K=232K](https://tex.z-dn.net/?f=45%5EoC%3D%5B-41.0%2B273%5DK%3D232K)
Putting values in above equation, we get:
![\ln(\frac{140.5mmHg}{462.7mmHg})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{252}-\frac{1}{232}]\\\\\Delta H_{vap}=28966.6J/mol=28.97kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B140.5mmHg%7D%7B462.7mmHg%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B252%7D-%5Cfrac%7B1%7D%7B232%7D%5D%5C%5C%5C%5C%5CDelta%20H_%7Bvap%7D%3D28966.6J%2Fmol%3D28.97kJ%2Fmol)
Therefore, the value of
is 28.97 kJ/mol
Answer:
0.17325 moles per liter per second
Explanation:
For a first order reaction;
in[A] = in[A]o - kt
Where;
[A]= concentration at time t
[A]o = initial concentration
k= rate constant
t= time taken
ln0.5 =ln1 - 2k
2k = ln1 - ln0.5
k= ln1 - ln0.5/2
k= 0 -(0.693)/2
k= 0.693/2
k= 0.3465 s-1
Rate of reaction = k[A]
Rate = 0.3465 s-1 × 0.50 mol/L
Rate = 0.17325 moles per liter per second
It is going to be reaction of neutralization, and water and salt will be formed. If acid and base are strong, the reaction of the solution should become neutral.