Answer:
the Hudson Bay was covered with alpine glaciers
Explanation:
During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.
Answer:
40 m/s
Explanation:
given,
height of the fall, h = 82 m
time taken to fall, t = 1.3 s
rock velocity, v = ?
acceleration due to gravity, g = 9.8 m/s²
rock is released initial velocity, u = 0 m/s
using equation of motion
v² = u² + 2 a s
v² = 0 + 2 x 9.8 x 82
v² = 1607.2
v = 40 m/s
hence, rock's velocity is equal to 40 m/s
Answer:
Nuclease is the answer I know
I hope this is the answer
Answer:
E
Explanation:
Using Coulomb's law equation
Force of the charge = k qQ /d²
and E = F/ q
substitute for F
E = ( K Qq/ d² ) / q
q cancel q
E = KQ / d²
so twice the distance of the from the point charge will lead to the E ( electric field ) decrease by a 4 = E/4. E is inversely proportional to d²
The electric potential at point A in the electric field= 0.099 x 10 ⁻¹v
<u>Explanation</u>:
Given data,
charge = 5.5 x 10¹² C
k =9.00 x 10⁹
The electric potential V of a point charge can found by,
V= kQ / r
Assuming, r=5.00×10⁻² m
V= 5.5 x 10⁻¹²C x 9.00 x 10⁹ / 5.00×10⁻² m
V= 49.5 x 10⁻³/ 5.00×10⁻²
Electric potential V= 0.099 x 10⁻¹v