Answer:
7.22 × 10²⁹ kg
Explanation:
For the material to be in place, the gravitational force on the material must equal the centripetal force on the material.
So, F = gravitational force = GMm/R² where M = mass of neutron star, m = mass of object and R = radius of neutron star = 17 km
The centripetal force F' = mRω² where R = radius of neutron star and ω = angular speed of neutron star
So, since F = F'
GMm/R² = mRω²
GM = R³ω²
M = R³ω²/G
Since ω = 500 rev/s = 500 × 2π rad/s = 1000π rad/s = 3141.6 rad/s = 3.142 × 10³ rad/s and r = 17 km = 17 × 10³ m and G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
Substituting the values of the variables into M, we have
M = R³ω²/G
M = (17 × 10³ m)³(3.142 × 10³ rad/s)²/6.67 × 10⁻¹¹ Nm²/kg²
M = 4913 × 10⁹ m³ × 9.872 × 10⁶ rad²/s²/6.67 × 10⁻¹¹ Nm²/kg²
M = 48,501.942 × 10¹⁵ m³rad²/s² ÷ 6.67 × 10⁻¹¹ Nm²/kg²
M = 7217.66 × 10²⁶ kg
M = 7.21766 × 10²⁹ kg
M ≅ 7.22 × 10²⁹ kg
D. <span>Johannes Kepler argued that Earth was the center of the universe.
</span>
Answer:
Explanation:
From the given information:
Since both stars are in the same cluster, the magnitude and luminosity relationship can be calculated as:

Given that;
m_1 = 1 and
m_2 = 4
Therefore,


Making
the subject of the formula:

=15.84
≅ 16
Hence, we can conclude that star X is more luminous by a factor of 16
To solve the problem, use Kepler's 3rd law :
T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
but first covert 6.00 years to seconds :
6.00years = 6.00years(365days/year)(24.0hours/day)(6...
= 1.89 x 10^8s
The radius of the orbit then is :
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.89 x 10^8s)² / 4π²]⅓
= 6.23 x 10^11m