You should note that the melting point of mercury is -38.83°C, while the boiling point is at 356.7°C. Then, that means that there is no latent heat involved here. We only compute for the sensible heat.
ΔH = mCpΔT
The Cp of mercury is 0.14 J/g·°C
Thus,
ΔH = (411 g)(0.14 J/g·°C)(88 - 12°C)
<em>ΔH = 4,373.04 J</em>
heat released Q = 749 joules
heat of fusion of silver L = 109 J/g
Here phase of silver is changing from liquid to solid
so temperature will remain same
all heat will be released due to its phase change
and in this case we use Q=mL
where m is the mass of silver in gram
Q= mL
749 = m * 109
m = 749/109
m = 6.87 gram
Since the Earth is almost spherical in shape, we are actually to find first the volume of the spherical segment at a depth of 1,000 m. The radius of the Earth is 6,371,000 meters. The volume of a spherical segment is:
V = 1/3*πh²(3r - h)
Substituting the values and making sure the units is in mm,
V = 1/3*π(1000 m * 1000 mm/1 m)²[3(6,371,000 m * 1000 mm/1 m) - (1000 m * 1000 mm/1 m)]
V = 2×10²² mm³
Thus, the total amount of bacteria is:
2×10²² mm³ * 100 bacteria/1 mm³ = 2×10²⁴ bacteria
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:


Answer: Use the formula q = m·ΔHv in which q = heat energy, m = mass, and ΔHv = heat of vaporization.