Answer:

Explanation:
Unit conversions:
1890 km/h = 1890 km/h * 1000m/km * 1/3600 h/s = 525 m/s
5.2 km = 5200 m
Assume that the jets is traveling in perfect circular motion, we can calculate the centripetal acceleration of the motion:

where v = 525m/s is the velocity of the jet and r = 5200 is the radius of the arc

Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
Equal to 50
law of reflection: angle of incidence equals angle of reflection
Answer:
2.667m/s to the north and 3.333 m/s to the west
Explanation:
According to law of momentum conservation, the total momentum should be conserved before and after the explosion.
Before the explosion, the momentum was
0.5*2 = 1 kg m/s to the west
Therefore the total momentum after the explosion should be the same horizontally and vertically.
Vertically speaking, it was 0 before the explosion. After the explosion:
0.2*4 + 0.3v = 0
0.3v = -0.8
v = -0.8/0.3 = -2.667 m/s
So the vertical component of the 0.3kg piece is 2.667m/s to the north
Horizontally speaking, since the 0.2kg-piece doesn't move west or east post-explosion:
0.2*0 + 0.3V = 1
0.3V = 1
V = 1/0.3 = 3.333 m/s
So the horizontal component of the 0.3kg piece is 3.333 m/s to the west