Answer:
995.313KW
Explanation:
the explanation is in the picture
please like and Mark as brainliest
Hello!
I saw this question and instantly knew I could help. I recently took a course on toxic gasses and poisons. Here's what I know.
It can be swallowed, inhaled, or absorbed through skin. It is generally released from its host compound by acids, such as the hydrochloric acid found in the stomach. The poison in the seeds is released only if the seeds are chewed.
Effects and symptoms:
Cyanide prevents the red blood cells from absorbing oxygen. It's called chemical asphyxia.
Smelling of a toxic dose of the gas can cause immediate unconsciousness, convulsions and death within one to fifteen minutes.
If swallowed a fatal dose can take up to twenty minutes or longer, esp. if swallowed on a full stomach.
If a near-lethal dose is absorbed through the skin, inhaled or swallowed the symptoms will include gasping for breath, dizziness, flushing, headache, nausea, vomiting, rapid pulse, and a drop in blood pressure causing fainting.
<span>With a lethal dose, convulsions with in four hours, except in the case of sodium nitroprusside, when death can be delayed as long as 12 hours after ingestion. </span>The victims blood may appear purple or cherry red, as in carbon monoxide poisoning, and the corpse may have pinker than normal skin.
<span>the famous bitter almond odor can be a clue and maybe noticeable at autopsy, but not everyone is capable of smelling it.
Hope this helped! :)</span>
Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.
Answer:
i)salt
Explanation:
NaCl is a neutral salt formed by reacting a strong acid HCl and a strong base NaOH. It is also ionic in nature.
It is also called common salt or table salt as it is used as edible in daily our life.