Answer:
91.7 kJ
Explanation:
Step 1: Given data
- Mass of ammonia (m): 66.7 g
- Molar heat of vaporization of ammonia (ΔH°vap): 23.4 kJ/mol
Step 2: Calculate the moles (n) corresponding to 66.7 g of ammonia
The molar mass of ammonia is 17.03 g/mol.
66.7 g × 1 mol/17.03 g = 3.92 mol
Step 3: Calculate the heat (Q) required to boil 3.92 moles of ammonia
We will use the following expression.
Q = ΔH°vap × n
Q = 23.4 kJ/mol × 3.92 mol = 91.7 kJ
Answer: -
Magnesium reacts very slowly to form magnesium hydroxide and hydrogen gas. The balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
Explanation: -
Chemical symbol of magnesium = Mg
Chemical formula for magnesium hydroxide = Mg(OH)₂
Chemical formula for hydrogen gas = H₂
The other reactant with Mg must be water H₂O.
Thus the balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
Answer:
APROXIMENTLY 17
Explanation:
lol i remebered from science class
Answer:
37.5 g NaCl
Explanation:
Step 1: Given data
- Concentration of NaCl: 15.0% m/m
- Mass of the solution: 250.0 g
Step 2: Calculate how many grams of NaCl are in 250.0 g of solution
The concentration of NaCl is 15.0% by mass, that is, there are 15.0 g of NaCl every 100 g of solution.
250.0 g Solution × 15.0 g NaCl/100 g Solution = 37.5 g NaCl
Explanation:
The electrical force between two objects is given by the formula as follows :

k is electrostatic constant
q₁ and q₂ are electric charges
d is distance between charges
So, the two force between two charged objects depends on the product of charges and distance between charges.