Answer:84.672 joules.
Explanation:
1) Data:
m = 7.2 kg
h = 1.2 m
g = 9.8 m / s²
2) Physical principle
Using the law of mechanical energy conservation principle, you have that the kinetic energy of the dog, when it jumps, must be equal to the final gravitational potential energy.
3) Calculations:
The gravitational potential energy, PE, is equal to m × g × h
So, PE = m × g × h = 7.2 kg × 9.8 m/s² × 1.2 m = 84.672 joules.
And that is the kinetic energy that the dog needs.
Answer:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[1] More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[2] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
Answer:

Explanation:
= Change in frequency = 2.1 Hz
= Frequency of source of sound = 440 Hz
= Maximum of the microphone
= Speed of sound = 343 m/s
= Time period = 2 s
We have the relation

Amplitude is given by

The amplitude of the simple harmonic motion is
.