Answer:
W = 1884J
Explanation:
This question is incomplete. The original question was:
<em>Consider a motor that exerts a constant torque of 25.0 N.m to a horizontal platform whose moment of inertia is 50.0kg.m^2 . Assume that the platform is initially at rest and the torque is applied for 12.0rotations . Neglect friction.
</em>
<em>
How much work W does the motor do on the platform during this process? Enter your answer in joules to four significant figures.</em>
The amount of work done by the motor is given by:


Where I = 50kg.m^2 and ωo = rad/s. We need to calculate ωf.
By using kinematics:

But we don't have the acceleration yet. So, we have to calculate it by making a sum of torque:

=> 
Now we can calculate the final velocity:

Finally, we calculate the total work:

Since the question asked to "<em>Enter your answer in joules to four significant figures.</em>":
W = 1884J
24-15=9 m/s slower in 12 seconds. So 9/12 m/s² slower. Therefore the acceleration is -0,75 m/s²
After looking at the transverse waves in the diagram you listed above, the one diagram that does represent the direction of particle X at the instant show in diagram number 3. The direction of the wave motion is up. The correct answer choice will be 3.
The sound wave would behave differently in a swimming pool than in his bedroom because sound waves travel faster in more dense mediums; such as water. The wave will travel faster in water, and slower in air.
Scientific theory because it's a theory it's already an answer but it might change depending on the condition.