Answer:

Explanation:
Since all the four charges are equidistant from the position of Q
so here we can assume this charge distribution to be uniform same as that of a ring
so here electric field due to ring on its axis is given as

here we have
x = b
and the radius of equivalent ring is given as the distance of each corner to the center of square

now we have

so the force on the charge is given as


Answer:
The charge is 
Explanation:
Given that,
Distance = 2.5 mm
Electric field = 800 NC
Length 
We need to calculate the linear charge density
Using formula of linear charge density


Put the value into the formula


We need to calculate the charge
Using formula of charge

Put the value into the formula


Hence, The charge is 
Answer:
Option B
Explanation:
The correct answer is Option B.
Before Moseley's discovery in 1913, In Mendeleev's periodic table the elements rearranged with increasing atomic mass.
Mendeleev was not able to locate hydrogen atom and late isotopes found violate Mendeleev table. The biggest drawback was that the atomic mass was not regular when moving one element to another.
But Moseley's arranged element in the periodic table with increasing atomic number.
Answer:
The value is 
Explanation:
From the question we are told that
The period of the asteroid is 
Generally the average distance of the asteroid from the sun is mathematically represented as
![R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BG%20M%20%2A%20T%5E2%20%7D%7B4%20%5Cpi%7D%20%7D)
Here M is the mass of the sun with a value

G is the gravitational constant with value 
![R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6.67%20%2A10%5E%7B-11%7D%20%20%2A%201.99%2A10%5E%7B30%7D%20%2A%20%5B5.55%20%2A10%5E%7B9%7D%5D%5E2%20%7D%7B4%20%2A%203.142%20%7D%20%7D)
=> 
Generally

So

=> 
=> 
Hi There,
This is False.
Hope this helped!