It’s solved by using a pretty standard formula for efficiency.
The combined momentum is 4000 kg m/s south
Explanation:
The total combined momentum of the two cars is given by the vector addition of the momenta of the two cars.
For this problem, we choose north as positive direction and south as negative direction.
The momentum of the first car travelling north is given by:

where
is the mass of the car
is its velocity
Substituting,

The momentum of the second car travelling south is given by:

where
is the mass of the car
is its velocity (negative because the car travels south)
Substituting,

And therefore, the combined momentum is

where the negative sign means the direction of the total momentum is south.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps