Answer:
- The thermal efficiency is 0.4113.
Explanation:
We know that the thermal efficiency is the ratio of work done by the engine over the heat taken

Now, how much work the engine do in a cycle?
We know that the work done in a cycle must be equal to the heat taken minus the heat rejected

So, the thermal efficiency will be:



Putting the values of the problem


Answer:
The stress S = 1935 [Psi]
Explanation:
This kind of problem belongs to the mechanical of materials field in the branch of the mechanical engineering.
The initial data:
P = internal pressure [Psi] = 90 [Psi]
Di= internal diameter [in] = 22 [in]
t = wall thickness [in] = 0.25 [in]
S = stress = [Psi]
Therefore
ri = internal radius = (Di)/2 - t = (22/2) - 0.25 = 10.75 [in]
And using the expression to find the stress:
![S=\frac{P*D_{i} }{2*t} \\replacing:\\S=\frac{90*10.75 }{2*0.25} \\S=1935[Psi]](https://tex.z-dn.net/?f=S%3D%5Cfrac%7BP%2AD_%7Bi%7D%20%7D%7B2%2At%7D%20%5C%5Creplacing%3A%5C%5CS%3D%5Cfrac%7B90%2A10.75%20%7D%7B2%2A0.25%7D%20%5C%5CS%3D1935%5BPsi%5D)
In the attached image we can see the stress σ1 & σ2 = S acting over the point A.
Answer:
( Galileo )discovered evidence to support Copernicus' heliocentric theory when he observed four moons in orbit around Jupiter
Answer:
Negative work done of 30729.6 Joules
Explanation:
Since work done is dot product of force and displacement. so,
W= F.d
W= F d cosΘ
where Θ is the angle between force and displacement. Since resistive force and displacement makes an angle of 180 (as one is pointed east and other west). So,
W = (7.92)(1940)(cos (180)) (distance should be in meter)
W = 15364.8(-1)
W = -15364.8 (for going east)
Total work done will be twice of that as the resistive force and distance are same for the way back.
W = -15364.8 + (-15364.8)
W = -30729.6 Joules
Answer:
Time always is on X axis.