Answer:
Yes, it does, although only physically and not chemically.
Explanation:
If a volume of gas is way spread out, it won't collide with the other gas particles as often, reducing pressure and temperature because they lose kinetic energy to their surroundings when they don't collide.
If it is compressed, it increases temperature and pressure because the gas particles collide with each other and the walls of the container way more often than if they had more space.
Hope this answers your question.
P.S.
Fun fact, gas particles are actually moving at 300-400 meters per second at room temperature, they only slow down to walking speed at very low temperatures, like 10 Kelvin
Answer:
hydronic chloride that's it
The best and the most correct answer among the choices provided by the question is the third choice. The ion that would represent the element from Group 1A is Z+. I hope my answer has come to your help. God bless and have a nice day ahead!
The molar mass of a substance/chemical is the mass of the sample substance divided by the amount of substance in that sample.
Explanation:
- In order to calculate the atomic mass of a substance we first obtain the atomic weight of the substance from the periodic table.
- Then we count the number of atoms of the substance and multiply it with the individual atomic mass.
Molar mass of Citric Acid ( H3C6H5O7) is 192.1235 g/mol
It is calculated as :
Molar mass of C₆H₈O₇ = 6(atomic mass of C) + 8(atomic mass of H) + 7(atomic mass of O) = 6(12.0 g/mol) + 8(1.0 g/mol) + 7(16.0 g/mol) = 192.0 g/mol.
Molar mass of baking soda (NaHCO₃) is 84.0 g/mol
Molar mass of NaHCO₃ = (atomic mass of Na) + (atomic mass of H) + (atomic mass of C) + 3(atomic mass of O) = (23.0 g/mol) + (1.0 g/mol) + (12.0 g/mol) + 3(16.0 g/mol) = 84.0 g/mol.
Molar mass=MM
MM(Hg)=200.59g/mol
MM(N)=14.01g/mol
MM(O)=16.00g/mol
MM(Hg(NO3)2)=MM(Hg)+2*MM(N)+6*MM(O)=200.59g+2*14.01g+6*16g=324.61g/mol
1.60mol Hg(NO3)2*(324.61g/mol)=519.376 g=519 g Hg(NO3)2