Technically, the answer should be 3.30 * 10^23 grams. But I think you mean either molecules, atoms, moles or grams of Ni2I6 with that number of molecules .
1 mole of Ni2 I6 = 6.02 * 10^23 molecules
x [mole] = 3.30 * 10^23 molecules
1/x = 6.02 * 10^23 / 3.30 * 10^23 Cancel the 10^23 on the right side
1/x = 6.02 / 3.30 Cross multiply
3.30 = 6.02 x Divide by 6.02
3.30 / 6.02 = x
x = 0.548 moles
what to do from here?
1 mole of Ni2I6 is
2 * Ni = 2 * 59 = 118 grams
6 * I = 6 * 131 = <u>786 grams</u>
Total = 904 grams
Set up a proportion.
<u>1 mole Ni2I6 </u> = <u>904 grams</u>
0.548 moles = x
1/0.548 = 904/x Cross multiply
x = 0.548 * 904
x = 495.4 grams of Ni2I6 <<<<<< Answer.
Answer:Reflection is the bounce back of the rays of light
The overall fusion reaction is the conversion of Hydrogen to Helium
The sample with the lowest AVERAGE kinetic energy is
the coolest one.
The sample with the lowest TOTAL kinetic energy depends on
not only the temperature of the samples, but also on their size,
since each molecule in the sample has kinetic energy.
The pH of a solution is 9.02.
c(HCN) = 1.25 M; concentration of the cyanide acid
n(NaCN) = 1.37 mol; amount of the salt
V = 1.699 l; volume of the solution
c(NaCN) = 1.37 mol ÷ 1.699 l
c(NaCN) = 0.806 M; concentration of the salt
Ka = 6.2 × 10⁻¹⁰; acid constant
pKa = -logKa
pKa = - log (6.2 × 10⁻¹⁰)
pKa = 9.21
Henderson–Hasselbalch equation for the buffer solution:
pH = pKa + log(cs/ck)
pH = pKa + log(cs/ck)
pH = 9.21 + log (0.806M/1.25M)
pH = 9.21 - 0.19
pH = 9.02; potential of hydrogen
More about buffer: brainly.com/question/4177791
#SPJ4