It is given that the surface area of sphere is 4 π r² and its volume is (4/3 π r³)
With a diameter of 1.2 mm you have a radius of 0.6 mm so the surface area about 4.5 mm² and the volume is about 0.9 mm³
The total surface energy of the original droplet is (4.5 x 10⁻⁶ m x 72) = 3.24 x 10⁻⁴mJ
The five smaller droplets need to have the same volume as the original so:
5 V = 0.9 mm³ so the volume of smaller sphere will equal 0.18 mm³
Since this smaller volume still have volume (4/3 π r³) so r = 0.35 mm
Each of the smaller droplets has a surface are = 1.54 mm²
The surface energy of the 5 smaller droplet is then (5 x 1.54 x 10⁻⁶ m x 72) = 5.54 x 10⁻⁴ mJ
From this radius the surface energy of all smaller droplets is 5.54 x 10⁻⁴ and the difference in energy is (5.54 x 10⁻⁴) - (3.24 x 10⁻⁴) = 2.3 x 10⁻⁴ mJ
Therefore we need about 2.3 x 10⁻⁴ mJ of energy to change a spherical droplet of water of diameter 1.2 mm into 5 identical smaller droplets
Answer:
0.01 M
Explanation:
The chemist is performing a serial dilution in order tyo obtain the calibration curve for the instrument.
First we must obtain the concentration of the solution in the 250ml flask from
C1V1 = C2V2
Where;
C1 = concentration of the stock solution
V1 = volume of the stock solution
C2 = concentration of the diluted solution
V2= volume of the diluted solution
2.61 × 10 = C2 × 250
C2 = 2.61 × 10/250
C2 = 0.1 M
Hence for solution in 100ml flask;
0.1 × 10 = C2 × 100
C2 = 0.1 × 10/100
C2 = 0.01 M
Answer:
pauli exclusion principle states that no two electrons in the same orbital can have the same spin.
Explanation:
this means you can't have 2 up arrows or 2 down arrows in your box
Answer is B the number of reactants is the same as the number of products