Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Answer:
k = 0.0306 min-1
Explanation:
The table is given as;
Time, Concentration
0 1.48
5 1.27
10 0.98
15 0.84
The integrated rate law for a first order reaction is given as;
ln [A] = -kt + ln [Ao]
where;
[A] = Final Concentration
[Ao] = Initial Concentration
k = rate constant
t = time
In the table, taking the first two sets of values;
t = 5
k = ?
[Ao] = 1.48
[A] = 1.27
Inserting into the equation;
ln(1.27) = - k (5) + ln(1.48)
ln(1.27) - ln(1.48) = -5k
-0.1530 = -5k
k = -0.1530 / -5
k = 0.0306 min-1
Answer: both the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Explanation:
Glycogen is a polysaccharide of glucose which is a form of energy storage in fungi, bacteria and animals. Glycogen is primarily stored in the liver cells and skeletal muscle.
The difference in interchain stability between the polysaccharides glycogen and cellulose is due to the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Answer:
697 g
Explanation:
Ethanol (C₂H₅OH) and butanoic acid (C₃H₇COOH) react to form ethyl butanoate (C₃H₇COOC₂H₅) and water (H₂O).
C₂H₅OH + C₃H₇COOH → C₃H₇COOC₂H₅ + H₂O
The molar ratio of C₂H₅OH to C₃H₇COOC₂H₅ is 1:1. The moles of C₃H₇COOC₂H₅ produced from 6.00 moles of C₂H₅OH are:
6.00 mol C₂H₅OH × (1 mol C₃H₇COOC₂H₅/1 mol C₂H₅OH) = 6.00 mol C₃H₇COOC₂H₅
The molar mass of C₃H₇COOC₂H₅ is 116.16 g/mol. The mass corresponding to 6.00 mol is:
6.00 mol × (116.16 g/mol) = 697 g
Answer:
the volume will expand
Explanation:
gas under pressure contracts, and expands with a lesser pressure