Answer:
Motile bacteria have flagella, while nonmotile bacteria do not.
Explanation:
Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer
Answer:
The answer is
<h2>11.25 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 45 g
volume = 4 mL
Substitute the values into the above formula and solve for the density
We have

We have the final answer as
<h3>11.25 g/mL</h3>
Hope this helps you
Chlorine (Cl) forms a salt when it is combined with a metal. This element belongs in halogens. GROUP 17
Explanation:
The molarity of a solution is defined like the number of moles of solute per liters of solution.
molarity = moles of solute/(volume of solution in L)
We know the volume of solution in L.
volume of solution = 0.65 L
To go from the mass of our solute in grams to moles we have to use its molar mass.
mass of NaCl = 63 g
molar mass of NaCl = 58.44 g/mol
moles of NaCl = 63 g * 1 mol/(58.44 g)
moles of NaCl = 1.078 moles
Finally we can find the molarity of the solution
molarity = moles of NaCl/(volume of solution)
molarity = 1.078 moles/(0.65 L)
molarity = 1.66 M
Answer: the molarity of the solution is 1.66 M.