Answer:
Q = -18118.5KJ
W = -18118.5KJ
∆U = 0
∆H = 0
∆S = -60.80KJ/KgK
Explanation:
W = RTln(P1/P2)
P1 = 1bar = 100KN/m^2, P2 = 1500bar = 1500×100 = 150000KN/m^2, T = 23°C = 23 + 273K = 298K
W = 8.314×298ln(100/150000) = 8.314×298×-7.313 = -18118.5KJ ( work is negative because the isothermal process involves compression)
∆U = Cv(T2 - T1)
For an isothermal process, temperature is constant, so T2 = T1
∆U = Cv(T1 - T1) = Cv × 0 = 0
Q = ∆U + W = 0 + (-18118.5) = 0 - 18118.5 = -18118.5KJ
∆H = Cp(T2 - T1)
T2 = T1
∆H = Cp(T1 - T1) = Cp × 0 = 0
∆S = Q/T
Mass of water = 1kg
Heat transferred (Q) per kilogram of water = -18118.5KJ/Kg
∆S = (-18118.5KJ/Kg)/298K = -60.80KJ/KgK
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiii THANK YOU SO MUCH FOR THE POINT
Answer:
The new equilibrium total pressure will be increased to one-half to initial total pressure.
Explanation:
From the information given :
The equation of the reaction can be represented as;

From above equation:
2 moles of sulphur dioxide reacts with 1 mole of oxygen (i.e 2 moles +1 mole =3 moles ) to give 2 moles of sulphur trioxide
So; suppose the volume of this system is compressed to one-half its initial volume and then equilibrium is reestablished.
So if this process takes place ; the equilibrium will definitely shift to the side with fewer moles , thus the equilibrium will shift to the right. As such; there is increase in pressure.
Let the total pressure at the initial equilibrium be 
and the total pressure at the final equilibrium be 
According to Boyle's Law; Boyle's Law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Thus;
P ∝ 1/V
P = K/V
PV = K
where K = constant
So;
PV = constant
Hence;

From the foregoing; since the volume is decreased to one- half to initial Volume; then ,

also;
Thus ;



Dividing both sides by 


From ;




Thus; The new equilibrium total pressure will be increased to one-half to initial total pressure.
The concentration of the solution reduces and the number of moles of solute isn't affected.
Data;
- V1 = 50mL
- C1 = 12.0M
- V2 = 200mL
- C2 = ?
<h3>Facts about the diluted solution</h3>
1. When the solution is diluted, the concentration changes and this time, the concentration reduces.
Using dilution formula

The concentration of the solution reduces.
2. The number of moles remains the same.
When a solution is diluted, the number of moles remains the same because there's no change in the mass of the solute.
Learn more on concentration of a solution here;
brainly.com/question/2201903
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.