Weight = (mass) x (acceleration of gravity).
When I calculate the weight of the 81.6 kg, the number I use for gravity
is 9.807 m/s². That gives a weight of 800.25 N, so I think that's where the
question got the crazy number of 81.6 kg ... whoever wrote the problem
wants the hay to weigh 800 N, and that's what I'll use for the weight.
The forces on the bale of hay are gravity: 800N downward, and the
guy on the truck with the pitchfork pulling upward on it with 850 N.
The net force on the bale is (850 - 800) = 50 N upward.
Use Newton's second law of motion: (Net force) = (mass) x (acceleration)
Divide each side by 'mass' :
Acceleration = (net force)/(mass)
On the hay wagon,
Acceleration = (50 N upward) / (81.6 kg) = <em>0.613 m/s² upward</em>
Answer:
A. Gamma rays have higher energy than microwaves because gamma rays have shorter wavelengths.
Explanation:
Electromagnetic waves are waves produced by the interaction between both magnetic and electric fields. These waves have some properties that make them to be arranged in a definite form producing an electromagnetic spectrum.
The spectrum has a general property of which as the wavelength of the waves increases, the frequency decreases. And vice versa.
Thus, the energy of the waves increases as the frequency increases.
Gamma rays have higher frequency, but shorter wavelength. While microwaves has lower frequency, but higher wavelength.
Answer:
Change in Velocity because

Explanation:
Remeber area is length times Width. In this case, the area under a accleraton vs time graph is Accleration Times Time. Which is velocity
Answer:
The work done is 0.
Explanation:
The reason no work is done is because the equation W = Fs.
W = work
F= force
s= displacement
In this scenario F = 50 and s= 0
Therefore.
W = 50(0)
W = 0
The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.