The gravitational force of two objects, by definition, is given by:

Where,
G: gravitational constant
m1: mass of object number 1.
m2: mass of object number 2.
d: distance between both objects.
Therefore, according to the given equation, a change that always results in an increase in gravitational force is:
Increase in the mass of the objects and decrease in the distance between them.
Answer:
A change that will always result in an increase in the gravitational force between two objects is:
Increase in the mass of the objects and decrease in the distance between them.
Every second it travels 2 meters and it traveled 3 so (2 x 3) would be 6meters it traveled
Can you give more description ??
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is, 
Velocity in north direction is, 
Now, since
are perpendicular to each other, their resultant magnitude is given as:

Plug in the given values and solve for the magnitude of the resultant.This gives,

Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:

Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.