To calculate the gravitational force acting on an object given the mass and the acceleration due to gravity, use the following formula.
Fg = m • g
Fg = 1.3 kg • 9.8 m/s^2
Fg = 12.74 N or about 12.7 N.
The solution is C. 12.7 N.
Hello!

Use the equation F = m · a (Newton's Second Law) to solve. Substitute in the given values:
F = 5 · 20
F = 100N
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr
Answer: B superconductors
Explanation:
This is your perfect answer
It is flexible. Water flow can be adjusted and even conserved according to the need for power. It is safe! Compared with the use of fossil fuels and nuclear energy, hydropower is a much safer system..