Answer:
1.-E=1000N/C to the LEFT
2.-The electric field inside a conductor in electrostatic state is always zero (conductor proprieties).
3.-The voltmeter read 0V as differential voltage between two points from the conductor
Explanation:
1.The electric field inside the conductor must be zero (conductor proprieties). Then the charges create a electric field equal an opposite to the external electric field. In other words E=1000N/C to the LEFT
2. The electric field inside a conductor in electrostatic state is always zero. As shown in the figure the electric field induced by the charges in the sphere surface cancelled the EXTERN electric field.
3.If the Electric field inside the conductor is zero, that means that the Voltage in the hole conductor is constant (conductor proprieties). In other words the the voltmeter read 0v as differential voltage between two points from the conductor.
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
Answer:I would guess a plane
Assuming they all Thad the same velocity....
Answer:
2, 6
Explanation:
2 because if you cut down more trees you will have less items to help collect co2
6 because if you have more manufracturing more gasses will be release and moe carbon dioxcide in the air so it will slowly kill the ozone layer.
Answer:
Magnets are employed to generate electricity.
Explanation:
Magnets' characteristics are employed to generate electricity. Electrons are pulled and pushed by moving magnetic fields. When you move a magnet around a coil of wire, or a coil of wire around a magnet, the electrons in the wire are pushed out and an electrical current is created.