Answer:

Explanation:
information we know:
Total force: 
Weight: 
distance: 
vertical component of the force: 
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: 
vertical component: 
but from the given information we know that 
so, equation these two
and 

and we know the force
, thus:

now we clear for 

the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:


whith this horizontal component we calculate the work to move the crate a distance of 4 m:

the work done is W=173.48J
Answer:
1. 8437500 N
2. The force between the two charges is attractive.
Explanation:
1. Determination of the force between the two charges.
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
Distance apart (r) = 80 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 2 × 3 / 80²
F = 5.4×10¹⁰ / 6400
F = 8437500 N
Thus, the force of attraction between the two charges is 8437500 N
2. From the question given, the charges are:
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
We understood that like charges repels while unlike charges attract. Since the two charges (i.e –2 C and 3 C) has opposite signs, it means they will attract each other.
Thus the force between them is attractive.
Answer:
<h2>
14.66secs</h2>
Explanation:
Given the formula for calculating the depth in metres expressed as
depth in meters = ½ (1500 m/sec × Echo travel time in seconds)
Given depth of the challenger = 10, 994 meters, we will substitute this given value into the formula given to calculate the time take for the echo to travel.
10, 994 = depth in meters = ½ * 1500 m/sec × Echo travel time in seconds
10,994 = 750 * Echo travel time in seconds
Dividing both sides by 750;
Echo travel time in seconds = 10,994 /750
Echo travel time in seconds ≈ 14.66secs (to two decimal places)
Therefore, it would take an echo sounder’s ping 14.66secs to make the trip from a ship to the Challenger Deep and back
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>
Answer:
See the explanation below,
Explanation:
Momentum is defined as the product of mass by Velocity. In this way, we will replace the following equation in each of the cases.

where:
P = momentum [kg*m/s]
m = mass [kg]
v = velocity [m/s]
A)

B)
![P=100*5\\P=500[kg*m/s]](https://tex.z-dn.net/?f=P%3D100%2A5%5C%5CP%3D500%5Bkg%2Am%2Fs%5D)
C)
![P=1200*15\\P=18000[kg*m/s]](https://tex.z-dn.net/?f=P%3D1200%2A15%5C%5CP%3D18000%5Bkg%2Am%2Fs%5D)
D)
![P=15*1000\\P=15000[kg*m/s]](https://tex.z-dn.net/?f=P%3D15%2A1000%5C%5CP%3D15000%5Bkg%2Am%2Fs%5D)
From higher to lower momentum
C,D,B,A