In short, when light illuminates a piece of metal, the light kicks off electrons from the metal’s surface and these electrons can be detected as a change in the electric charge of the metal or as an electric current. Hence the name: photo for light and electric for the current. The explanation behind this simple phenomenon opened the door to revolutionary modern physics concepts regarding the composition of light, quantum mechanics, and what is now referred to as the “wave-particle duality” of nature. The wave-particle duality of nature is perhaps one of the greatest mysteries of our universe and a very interesting philosophical subject! Your goal in this lab is to reproduce the photoelectric effect for yourselves and to understand how it demonstrates the particle behavior of light.
Answer:
2 per s
Explanation:
divid 40 and 20 it gives you = 2
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.