Identical 50 μC charges are fixed on an x axis at x = ±3.0 m. A particle of charge q = -15 μC is then released from rest at a po
int on the positive part of the y axis. Due to the symmetry of the situation, the particle moves along the y axis and has kinetic energy 1.2 J as it passes through the point x = 0, y = 4.0 m. (a) What is the kinetic energy of the particle as it passes through the origin?
(b) At what negative value of y will the particle momentarily stop?
Because in thermal conduction there is no flow of extra electrons through conductor incase the vibration of neighbour electron,atom Helps to transfer heat energy
Since no friction present, assuming no external forces acting during the three collisions, total momentum must be conserved.
For the first collission, only mass 1 is moving before it, so we can write the following equation:
Since both masses are identical, and they stick together after the collision, we can express the final momentum as follows:
From (1) and (2) we get:
v₁ = v₀/2 (3)
Since the masses are moving on a frictionless 1D track, the speed of the set of mass 1 and 2 combined together before colliding with mass 3 is just v₁, so the initial momentum prior the second collision (p₁) can be expressed as follows:
Since after the collision the three masses stick together, we can express this final momentum (p₂) as follows:
From (4) and (5) we get:
v₂ = v₀/3 (6)
Since the masses are moving on a frictionless 1D track, the speed of the set of mass 1, 2 and 3 combined together before colliding with mass 4 is just v₂, so the initial momentum prior the third collision (p₂) can be expressed as follows:
Since after the collision the four masses stick together, we can express this final momentum (p₃) as follows:
From (7) and (8) we get:
v₃ = v₀/4
This means that after the last collision, the speed will have been reduced to a 25% of the initial value, so it will have been reduced in a 75% regarding the initial value of v₀.