Base in your questions that ask what cause the bright lines seen in the emission spectrum and i think the best answer to that is the H2 gas is used when protons was heated so the electron absorb all the photons and get exited and resulted by given of a light.
Answer:
0.29D
Explanation:
Given that
F = G M m / r2
F = GM(6m) / (D-r)2
G Mm/r2 = GM(6m) / (D-r)2
1/r2 = 6 / (D-r)2
r = D / (Ö6 + 1)
r = 0.29 D
See diagram in attached file
In a velocity-time graph, the area under the curve represents the distance.
The distance traveled from 10s to 18 s is

Final Answer: The distance traveled is 40 m from time 10 s to 18 s.
B. Asteroids have a nearly circular orbit.
(a) The lowest frequency (called fundamental frequency) of a wire stretched under a tension T is given by

where
L is the wire length
T is the tension
m is the wire mass
In our problem, L=10.9 m, m=55.8 g=0.0558 kg and T=253 N, therefore the fundamental frequency of the wire is

b) The frequency of the nth-harmonic for a standing wave in a wire is given by

where n is the order of the harmonic and f1 is the fundamental frequency. If we use n=2, we find the second lowest frequency of the wire:

c) Similarly, the third lowest frequency (third harmonic) is given by