Answer: 42.49
Explanation:
To solve this, we need to keep in mind the following:
While the sphere hangs it is under the effect of gravity. It is creating a Angle of 90° taking the roof as a reference.
Gravity can be noted as a Acceleration Vector. The magnitud for Earth's Gravity is a constant: 9.81 
The acceleration of the Van will affect the sphere also, but this accelaration will be on the X-axis and perpendicular to the gravity. Because this two vectors are taking action under the sphere they will create a angle. This angle can be measured as a relation of the two magnitudes.
Tangent (∅) = Opossite Side / Adyacent Side
By trigonometry, we know the previous formula. This formula allows us to find the Tangent of a angle as a relation between the two perpendiculars magnitudes. In this case the Opossite Side will be the Gravity Accelaration, while the Adyancent Side is the Van's Acceleration.
(1) Tangent (∅) = Gravity's Acceleration (G) / Van's Acceleration (Va)
Searching for the Va in (1)
Va = G/Tan(∅)
Where ∅ in this case is equal to 13.0°
Va = 9.81
/ Tan(13.0°)
Va = 42.49
The vans acceleration need to be 42.49
to create an angle of 13° with the Van's Roof
C. cooked noodles and water
because noodles are long and water has no shape or size.
if you have any problems with this answer,
comment and I will fix it.
Thank s!
<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω
Hi there!
A.
Since the can was launched from ground level, we know that its trajectory forms a symmetrical, parabolic shape. In other words, the time taken for the can to reach the top is the same as the time it takes to fall down.
Thus, the time to its highest point:

Now, we can determine the velocity at which the can was launched at using the following equation:

In this instance, we are going to look at the VERTICAL component of the velocity, since at the top of the trajectory, the vertical velocity = 0 m/s.
Therefore:

***vsinθ is the vertical component of the velocity.
Solve for 'v':

Now, recall that:

Plug in the expression for velocity:

B.
We can use the same process as above, where T' = 2T and Th = T.

C.
The work done in part B is 4 times greater than the work done in part A.

Use your feet to stop it since it is soccer you can't use your hands!!!! P.S. you can't use gravity.