Do you still need the answer for these ? if so , i have them
Answer:
146.85 g/mol
Explanation:
PV=nRT
n=mass/molar mass
covert from mmhg to atm = 0.184 atm
convert from ml to L= 0.108 L
convert from degree C to K= 456.15 K
convert from mg to g= 0.07796g
then rearrange the formula:
n=PV/RT
=(0.184)(0.108)/(0.08206)(456.15)
n= 5.308*10^(-4)
rearrange the n formula interms of molar mass:
Molar mass= mass/n
=0.07796/(5.308*10^-4)
molar mass= 146.85g/mol
<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>
Answer: Adenine and guanine are the two purines and cytosine, thymine and uracil are the three pyrimidines. The main difference between purines and pyrimidines is that purines contain a sixmembered nitrogencontaining ring fused to an imidazole ring whereas pyrimidines contain only a sixmembered nitrogencontaining ring. They both are types or categories of nitrogen containing bases present in nuclei acids of DNA and RNA.
Purines are 2 Ring or Carbon Ring, Nitrogen containing bases. That consist of these 2 rings next placed next to each other. These examples include - Adenine and Guanine.
Pyrimidines are 1 or single Ring Nitrogen containing structures. There are 3 nitrogenous bases that are categorized as pyrimidines. Cytosine, Thymine, and Uracil.