Answer:
North
Explanation:
In an electromagnetic wave, the direction of the wave, the direction of the electric field and the direction of the magnetic field are all perpendicular to each other.
Therefore, we can find the direction of the magnetic field by using the right hand rule. We have:
- Index finger: direction of motion of the wave --> toward the center of Earth
- middle finger: direction of the electric field --> west
- thumb: direction of the magnetic field --> north
So, the magnetic field points north.
Answer:
The work done on the system is -616 kJ
Explanation:
Given;
Quantity of heat absorbed by the system, Q = 767 kJ
change in the internal energy of the system, ΔU = +151 kJ
Apply the first law of thermodynamics;
ΔU = W + Q
Where;
ΔU is the change in internal energy
W is the work done
Q is the heat gained
W = ΔU - Q
W = 151 - 767
W = -616 kJ (The negative sign indicates that the work is done on the system)
Therefore, the work done on the system is -616 kJ
Answer:
Friction is a force that slows down the motion of a moving object. ... Eventually, friction and gravity will work together to stop the motion of the slide. Gravity is a force that pulls two objects toward each other because of their mass. Mass is the measurement of the amount of material (matter) that makes up an object.
1.) Pitch
2.)Wavelength
3.)Density/Elastic Properties-b. Two of the above
4.)Liquids
5.) I'm not sure but I'm pretty sure it's the Doppler effect
6.) Frequency Increases
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad