Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


The empirical formula is a formula of a compound showing the proportion of each element involved in the compounds but it does not represent the total number of atoms in the compound. It is the lowest number of ratio between the elements in the compound. In order, to determine the actual number of the atoms or the molecular formula of the compounds, we make use of the molar mass of the compound.
<span>To
determine the molecular formula, we multiply a value to the empirical formula.
Then, calculate the molar mass and see whether it is equal to the one
given (104.1 g/ mol). From the choices, the only valid options are b, d and e.
</span> molar mass
1 CH 13.02
8 C8H8 104.16
6 C6H6 78.12
Therefore the correct answer is option B.
21Explanation:BEACUSE I CAN
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed
