1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
3 years ago
14

Balance the following: ___ AlBr3+ ___ K---> ___KBr+ ___ Al

Chemistry
1 answer:
Nataliya [291]3 years ago
6 0
___AlBr3 + ___K -> ___KBr + ___ Al

1 AlBr3 + 3K -> 3KBr + 1 Al

hope this helps............
You might be interested in
A solution was prepared by dissolving 0.800 g of sulfur S8, in 100.0 g of acetic acid, HC2H3O2. Calculate the freezing point and
sammy [17]

<u>Answer:</u> The freezing point of solution is 16.5°C and the boiling point of solution is 118.2°C

<u>Explanation:</u>

To calculate the molality of solution, we use the equation:

Molality=\frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ in grams}}

Where,

m_{solute} = Given mass of solute (S_8) = 0.800 g

M_{solute} = Molar mass of solute (S-8) = 256.52 g/mol

W_{solvent} = Mass of solvent (acetic acid) = 100.0 g

Putting values in above equation, we get:

\text{Molality of solution}=\frac{0.800\times 1000}{256.52\times 100.0}\\\\\text{Molality of solution}=0.0312m

  • <u>Calculation for freezing point of solution:</u>

Depression in freezing point is defined as the difference in the freezing point of water and freezing point of solution.

\Delta T_f=\text{freezing point of acetic acid}-\text{Freezing point of solution}

To calculate the depression in freezing point, we use the equation:

\Delta T_f=iK_fm

or,

\text{Freezing point of acetic acid}-\text{Freezing point of solution}=iK_fm

where,

Freezing point of acetic acid = 16.6°C

i = Vant hoff factor = 1 (for non-electrolyte)

K_f = molal freezing point depression constant = 3.59°C/m

m = molality of solution = 0.0312 m

Putting values in above equation, we get:

16.6^oC-\text{freezing point of solution}=1\times 3.59^oC/m\times 0.0312m\\\\\text{Freezing point of solution}=16.5^oC

Hence, the freezing point of solution is 16.5°C

  • <u>Calculation for boiling point of solution:</u>

Elevation in boiling point is defined as the difference in the boiling point of solution and freezing point of pure solution.

The equation used to calculate elevation in boiling point follows:

\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of acetic acid}

To calculate the elevation in boiling point, we use the equation:

\Delta T_b=iK_bm

or,

\text{Boiling point of solution}-\text{Boiling point of acetic acid}=iK_fm

where,

Boiling point of acetic acid = 118.1°C

i = Vant hoff factor = 1 (for non-electrolyte)

K_f = molal boiling point elevation constant = 3.08°C/m

m = molality of solution = 0.0312 m

Putting values in above equation, we get:

\text{Boiling point of solution}-118.1^oC=1\times 3.08^oC/m\times 0.0312m\\\\\text{Boiling point of solution}=118.2^oC

Hence, the boiling point of solution is 118.2°C

5 0
3 years ago
wegener used that the same dinosaur fossils have been found in different continents to support his theory of continental drift.
shutvik [7]
The answer to this would be true.
4 0
2 years ago
If a system has a reaction quotient of 2.13 ✕ 10−15 at 100°C, what will happen to the concentrations of COBr2, CO, and Br2 as th
qaws [65]

This is an incomplete question, here is a complete question.

Consider the following equilibrium at 100°C.

COBr_2(g)\rightleftharpoons CO(g)+Br_2(g)

K_c=4.74\times 10^4

Concentration at equilibrium:

[COBr_2]=1.58\times 10^{-6}M

[Co]=2.78\times 10^{-3}M

[Br_2]=2.51\times 10^{-5}M

If a system has a reaction quotient of 2.13 × 10⁻¹⁵ at 100°c, what will happen to the concentrations of COBr₂, Co and Br₂ as the reaction proceeds to equilibrium?

Answer : The concentrations of Co and Br₂ decreases and the concentrations of COBr₂ increases.

Explanation :

Reaction quotient (Q) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.

The given balanced chemical reaction is,

COBr_2(g)\rightleftharpoons CO(g)+Br_2(g)

The expression for reaction quotient will be :

Q=\frac{[CO][Br_2]}{[COBr_2]}

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

Q=\frac{(2.78\times 10^{-3})\times (2.51\times 10^{-5})}{(1.58\times 10^{-6})}=4.42\times 10^{-2}

The given equilibrium constant value is, K_c=4.74\times 10^4

Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.

There are 3 conditions:

When Q>K_c that means product > reactant. So, the reaction is reactant favored.

When Q that means reactant > product. So, the reaction is product favored.

When Q=K_c that means product = reactant. So, the reaction is in equilibrium.

From the above we conclude that, the Q that means product < reactant. So, the reaction is product favored that means reaction must shift to the product (right) to be in equilibrium.

Hence, the concentrations of Co and Br₂ decreases and the concentrations of COBr₂ increases.

3 0
3 years ago
A change of matter is a physical change <br>True or False​
kodGreya [7K]

Answer:

true

Explanation:

hope it helps

8 0
3 years ago
Read 2 more answers
Bob pours tomato sauce over cooked spaghetti noodles and stirs them together to make a spaghetti cassarole. Which term best desc
Ierofanga [76]
A.


Spaghetti is still visible and hasn’t been mixed homogeneously
3 0
2 years ago
Other questions:
  • What is the value for ΔS°reaction for the following reaction, given the standard entropy values
    11·2 answers
  • Which formula represents a molecular compound?<br> (1) HI (3) KCl<br> (2) KI (4) LiCl
    9·2 answers
  • A puppy weight 7\18 pound and a kitten weight 4\9 pound Which weight more Explain​
    7·1 answer
  • The ideal gas constant, R has several different values that could be used. Which quantity causes these differences?
    7·1 answer
  • As the mass number of the isotopes of hydrogen increases, the number of protons
    5·1 answer
  • Cuando un gas que se encuentra a 20°c se calienta hasta los 40°c sin que varie su presion, su volumen se duplica
    10·1 answer
  • Question
    10·1 answer
  • Help me please!! thanks!
    15·1 answer
  • Why doesn't the air pressure crush this tiny<br> flower?
    7·1 answer
  • Pls help me guys please please​ only 1 question choose
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!