Solution :
We assume that there is a ring having a charge +Q and radius r. Electric field due to the ring at a point P on the axis is given by :




If we put an electron on point P, then force on point e is :

![F= \frac{-eKQx}{(r^2+x^2)^{3/2}}= \frac{-eKQx}{r^3[1+\frac{x^2}{r^2}]^{3/2}}](https://tex.z-dn.net/?f=F%3D%20%5Cfrac%7B-eKQx%7D%7B%28r%5E2%2Bx%5E2%29%5E%7B3%2F2%7D%7D%3D%20%5Cfrac%7B-eKQx%7D%7Br%5E3%5B1%2B%5Cfrac%7Bx%5E2%7D%7Br%5E2%7D%5D%5E%7B3%2F2%7D%7D)
If r >> x , then 
Then, 


Compare, a = -ω²x
We get,




The answer is 2.63m/s^2! You use the formula F=ma, 112 = 42.6(a), a= 2.63m/s^2.
Work = (force) x (distance)
When a force of 150 N pushes through a distance of 13 meters,
it does
Work = (150 N) x (13 m) = 1,950 joules .
Buoyancy is a force that always acts in an upward direction exerted by a fluid on a body placed in the fluid
Hope this helps :)
The answer is b 12N because
We know that<span>
W = F × d × c o s(θ)</span>
assuming theta=0 we then solve and have<span>
F=<span>W/d</span></span>
substitute known values to get:<span><span>
F=<span><span>60J/</span><span>5m</span></span>=12N</span></span>