I believe it is because the salt supports the weight of the egg
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
Answer:
Let f be force of friction on the blocks kept on inclined plane. T be tension in the string
For motion of block on the inclined plane in upward direction
T - m₁gsin40 - f = m₁a
f = μ m₁gcos40
For motion of hanging block on in downward direction
m₂g - T = m₂ a
Adding to cancel T
m₂g - - m₁gsin40 - μ m₁gcos40 = a ( m₁+m₂ )
a = g (m₂ - - m₁sin40 - μ m₁cos40) / ( m₁+m₂ )
Putting the values
a = 9.8 ( 4.75 - 2.12-1.045) / 7.6
2.04 m s⁻²
M₂ will go down and M₁ will go up with acceleration .
Explanation:
Answer:
The new time period will be T.
Explanation:
The time period in terms of spring constant and mass is given by :

If mass and force constant is doubled, m' = 2m and k' = 2k
New time period is given by :




So, the new period will remains the same. Hence, the correct option is (C).