The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4
Two neutral objects will not have any electric force of attraction or repulsion between them.
<h3>What is the condition for the electric force between two objects?</h3>
As we know from the electrostatics that whenever there are two charges having a positive charge on one and a negative on the other will attract each other
similarly, if they are having like charges which are both of them having positive or both of them having a negative charge then there will be a force of repulsion between them.
But if both of them or even one of them is neutral then there will not be any electric force between them.
Thus neutral objects will not have any electric force of attraction or repulsion between them.
To know more about the nature of charged particles follow
brainly.com/question/22492496
The formula for both is v(t) = v0 + a*t
b) v(8) = 0 + 6m/s^2 *8s = 48 m/s
now we know the beginning (2) and end speed (14), but not the time:
c) 14 = 2 + 1.5*t => t = (14-2)/1.5 = 8 seconds
Answer:
Wavelength = 0.7083 meters
Explanation:
Given the following data;
Speed of wave = 340 m/s
Frequency = 480 Hz
To find how long is the sound wave, we would determine its wavelength;
Mathematically, the wavelength of a waveform is given by the formula;
Wavelength = velocity/frequency
Wavelength = 340/480
Wavelength = 0.7083 meters