Answer:
Solon,
total mass (kg)= 100kg
height (h)= 25m
acceleration due to gravity = 9.8m/s²
so,
work done =m*g*h
= 100*9.8*25
= 24,500 joule
Answer:
300 K
Explanation:
First, we have find the specific heat capacity of the unknown substance.
The heat gained by the substance is given by the formula:
H = m*c*(T2 - T1)
Where m = mass of the substance
c = specific heat capacity
T2 = final temperature
T1 = initial temperature
From the question:
H = 200J
m = 4 kg
T1 = 200K
T2 = 240 K
Therefore:
200 = 4 * c * (240 - 200)
200 = 4 * c * 40
200 = 160 * c
c = 200/160
c = 1.25 J/kgK
The heat capacity of the substance is 1.25 J/kgK.
If 300 J of heat is added, the new heat becomes 500 J.
Hence, we need to find the final temperature, T2, when heat is 500 J.
Using the same formula:
500 = 4 * 1.25 * (T2 - 200)
500 = 5 * (T2 - 200)
100 = T2 - 200
=> T2 = 100 + 200 = 300 K
The new final temperature of the unknown substance is 300K.
Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
Answer:
240 Newtons
Explanatiohn:
f = m × a
f = 120 × 2
f = 240 Newtons
<h3>The force is 240 Newtons</h3>
The answer is A. locations by the ocean typically do not get as cold in the winter or as hot in the summer as locations that are located inland.