Answer:
Time = t = 6.62 s
Explanation:
Given data:
Height = h = 215 m
Initial velocity =
= 0 m/s
gravitational acceleration = g = 9.8 m/s²
Time = t = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero.

t² = 
t =
t = 
t = 6.62 s
Answer:
2 m/s^2
Explanation:
a = v^2/r
a = (10m/s)^2 / 50m
a = 2 m/s^2
Leave a like and mark brainliest if this helped
Leave a like and mark brainliest if this helped
Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²
Answer:
a. True
Explanation:
Solar radiation at frequencies of visible light passes through the atmosphere, heating the planet's surface, subsequently this energy is emitted in infrared thermal radiation. This radiation is absorbed by the gases produced by the combustion of fossil fuels. Therefore, the greater the amount of these gases in the atmosphere, the more heat will be trapped in the earth, raising its global temperature.
Answer:
If resistance increases current decreases.
Explanation:
- Current is <em>inversely proportional</em> to the resistance.
- from the relation given below, we can clearly see the relation between current and resistance;
V=IR
I ∝ 1/R
This relation shows that when resistance increases,current decreases.