The concept used to solve this problem is that given in the kinematic equations of motion. From theory we know that the change in velocities of a body is equivalent to twice the distance traveled by acceleration, in other words:

Where,
Final and initial velocity
a = Acceleration
x = Displacement
For the given case, the displacement is equivalent to the height (x = h) and the acceleration is the same gravitational acceleration (a = g). In turn we do not have initial speed therefore


Our values are given as


Replacing we have that,



Therefore the speed with which the liquid sulfur left the volcano is 529.15m/s
According to this equation
F = G × m₁*m₂ ÷ r²
other than the mass, the distance also affects the gravitational force between two objects (same mass or not).
Therefore the correct answer is B. The distance between the objects
Future note* use formulas to help you figure these sort of questions out. (if they have a formula to begin with).
71 MPM (Meters Per Minute)
S = Speed
D = Distance
T = Time
to find the Speed you divide D by your T
Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
Answer:
a. -8 cm
Explanation:
= distance of the object = 4 cm
= distance of the image = ?
= focal length of the converging lens = 8 cm
using the lens equation


= - 8 cm