Answer:
t = 0.55[sg]; v = 0.9[m/s]
Explanation:
In order to solve this problem we must establish the initial conditions with which we can work.
y = initial elevation = - 1.5 [m]
x = landing distance = 0.5 [m]
We set "y" with a negative value, as this height is below the table level.
in the following equation (vy)o is equal to zero because there is no velocity in the y component.
therefore:
![y = (v_{y})_{o}*t - \frac{1}{2} *g*t^{2}\\ where:\\(v_{y})_{o}=0[m/s]\\t = time [sg]\\g = gravity = 9.81[\frac{m}{s^{2}}]\\ -1.5 = 0*t -4.905*t^{2} \\t = \sqrt{\frac{1.5}{4.905} } \\t=0.55[s]](https://tex.z-dn.net/?f=y%20%3D%20%28v_%7By%7D%29_%7Bo%7D%2At%20-%20%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%5C%5C%20%20%20where%3A%5C%5C%28v_%7By%7D%29_%7Bo%7D%3D0%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%5Bsg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%5D%5C%5C%20-1.5%20%3D%200%2At%20-4.905%2At%5E%7B2%7D%20%5C%5Ct%20%3D%20%5Csqrt%7B%5Cfrac%7B1.5%7D%7B4.905%7D%20%7D%20%5C%5Ct%3D0.55%5Bs%5D)
Now we can find the initial velocity, It is important to note that the initial velocity has velocity components only in the x-axis.
![(v_{x} )_{o} = \frac{x}{t} \\(v_{x} )_{o} = \frac{0.5}{0.55} \\(v_{x} )_{o} =0.9[m/s]](https://tex.z-dn.net/?f=%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7B0.5%7D%7B0.55%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D0.9%5Bm%2Fs%5D)
Explanation:
i wish I could help you but its not clear...
Answer:

Explanation:
Maximum height reached by the ball after being popped by the bat is given as

now we know by energy conservation final speed of the ball after being hit by the bat is given as




now the change in momentum of the ball is given as


now force is given as rate of change in momentum



so magnitude of the force is given as


Answer:
Explanation:
Electrons play a major role in all chemical bonds. There is one type of bonding called electrovalent bonding (ionic), where an electron from one atom is transferred to another atom. You wind up creating two ions as one atom loses an electron and one gains one.
Answer:

Explanation:
<u>Net Force
</u>
The second Newton's law explains how to understand the dynamics of a system where several forces are acting. The forces are vectorial magnitudes which means the x and y coordinates must be treated separately. For each component, the net force must equal the mass by the acceleration, i.e.


The box with mass m=20 kg is pulled by a rope with a
angle above the horizontal. It means that force (called T) has two components:


We'll assume the positive directions are to the right and upwards and that the box is being pulled to the right. There are two forces in the x-axis: The x-component of T (to the right) and the friction force (to the left). So the equilibrium equation for x is

There are three forces acting in the y-axis: The component of T (upwards), the weight (downwards), and the Normal (upwards). Since there is no movement in the y-axis, the net force is zero and:

Rearranging:

Solving for N in the y-axis:

The friction force is given by

Replacing in the equation for the x-axis, we have

Replacing the formula for N in the equation for the x-axis

Operating and rearranging


Solving for T:

Plugging in the given values:

