Answer:
t = 2 s
Explanation:
In order to find the time taken by the stone to fall from the top of the building to the ground we can use 2nd equation of motion. 2nd equation of motion is as follows:
s = Vit + (0.5)gt²
where,
t = time = ?
Vi = Initial Velocity = 20 m/s
s = height of building = 60 m
g = 9.8 m/s²
Therefore,
60 m = (20 m/s)t + (0.5)(9.8 m/s²)t²
4.9t² + 20t - 60 = 0
solving this quadratic equation we get:
t = -6.1 s (OR) t = 2 s
Since, the time cannot be negative in magnitude.
Therefore,
<u>t = 2 s</u>
<span>The magnetic force exerted by two magnets decreases as the magnets are moved farther apart.
</span><span>The magnetic force between two magnets is the force of repulsion or attraction between two magnets which leads to the calculation of a positive work.
</span><span>The magnetic of a magnet is strongest at its poles.</span>
Answer:
0.10013 atm
Explanation:
Applying Boyle's Law,
P'V' = PV................... Equation 1
Where P' = Initial pressure of air, V' = Initial volume of air, P = Final pressure of air, V = Final volume of air.
make P the subject of the equation
P = P'V'/V..................... Equation 2
Given: P' = 0.355 atm, V' 0.110 m³, V = 0.390 m³
Substitute into equation 2
P = 0.355(0.11)/0.39
P = 0.10013 atm.
Answer: "B" Changing Position
Great Question!
Explanation: <u><em>When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, the ball ends up changing position</em></u>
<u><em /></u>
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>