<span>First question: The type of energy involved when a river moves sediment and erodes its banks is: option d. Kinetic energy. Kinetic energy is the energy associated with motion. A body (in this case the water) that moves has an energy associated with its motion that is proportional to the speed (exactly to the square of the speed). When the water collides with the banks it is the kinetic energy of the river that erodes it Second question: the answer is the option d. As gravity pulls water down a slope potential energy changes to knietic energy. This is the, water loses altitude and gains velocity. The potential energy. which is proportional to the height, decreases and the kinetic energy, which is proportional to the square of the speed, increases.</span>
Magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point specified by both direction and a magnitude. So uniform magnetic field has equal amount of force or magnetic force in both side of the object while the non uniform magnetic field has one of the object exert more than the other
The MA is 6! Hope This Helps!
The Action Force of this scenario is the pushing force of the Diver. The Reaction Force is the raft pushing back on the diver.
The Third Law of Motion states that "For every action, there is an equal and opposite reaction." Now when the diver dives off the raft, the raft is also pushing the same amount of force as the diver did as he dives off. The diver will then move forward and the raft on the other hand will move backwards.
The movement of the raft shows the opposite force. It will move backwards depending on how strong the diver will push off on the raft. And the amount of force he pushes on it, the raft will exert the same force so the stronger the force of the diver, the farther he will go because the raft will push him in that same direction as it goes backwards.
Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.